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ABSTRACT

In this thesis we discuss our research in incorporating Machine Learning into network

attack automation. The key idea is to audit the traffic between the attacker and the target

machine, then apply Decision Tree Learning methods on the audit data to generate a set of

rules, and create a smart attacker that is guided by those rules and is capable of launching

attack sequence according to the response from the target machine. By conducting experiments

on Linux platform, we constructed a framework named Auto Red Team (ART ) that audits

traffic, compose training data, and generate an smart attacker by feeding those training data

into a Decision Learning Tree model. Experiments shows that the ART can realize an effective

and accurate attack automation. Beside basic data analysis on the experiment data, we also

apply a statistical method, Principle Component Analysis on the experiment data to verify the

generated rules. Although the Principle Component Analysis can not completely explain the

rules by the Decision Tree module, some convincing explanations on the relationship between

those rules and certain Principal Components were given.
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CHAPTER 1. Introduction

In this chapter, we first describe the current state of attack automation and existing prob-

lem. We then provide our approach with emphasis of its contributions. Finally we give the

roadmap of this thesis.

1.1 Problem Statement

The number of potential targets for attacks against computer network is soaring because of

the increasing network scale, more and more diverse network user population, the evolution of

the information technologies, and other factors. These factors adversely impact the efficiency

of current network security systems. On the other hand, the threat of attack increases with

sophisticated technologies that can obfuscate the nature of attack, and make the attack more

dynamic and polymorphic. Thus, researches in new protection model against the increasing

attack threat is becoming extremely important.

Among other protection technologies, proactive and offensive approaches can provide net-

work security experts and system administrators with better help on identification of potential

security holes in current network infrastructure. One of the proactive methods is Red Team-

ing , an approach that deploys network security experts to play attackers, showing how a real

attacker would exploit the system’s vulnerability. With Red Teaming ’s help, the system can

be more effectively protected against the exploits from both script kiddies and sophisticated

hackers.

Government agencies and institutions have already benefited from the application of Red

Teamings. For example, the US Homeland Security Department launched simulation of com-

puter terrorist attacks on computer, banking, and utility systems in October 2003 [Bridis,
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T. (2003)]. The simulation exposed un-seen security holes, providing opportunities to the

security experts to fix these holes before outside hackers could find them. Another example is

the Cyber Defense Competition hosted by Information Assurance Center at Iowa State Uni-

versity. During the competition, the Blue teams build network systems including database

and websites, and the Red team that consists of skilled hackers performs penetration on those

network systems. Through the competition, the attendants will get deeper understanding on

network security.

To achieve Red Teaming ’s goal, the Red Team member must identify a real hacker’s inner

working, investigate all points of interest, and perform thorough penetration tests on them.

Some of those investigation and penetration tests are replicable. Security experts would be

emancipated from such redundant tasks if there were a robot taking over those replicable

tasks. There are certain softwares to perform simple automatic tasks. For example, the

Hacker-Safe from McAfee provides port scan to find vulnerability of a system. However, an

automatic attacker that can really alleviate the human being’s work loads should have profound

knowledge about the attacks, should be able to play single attack or a set of attacks consisting

of multiple types of exploits, and should be able to dynamically change its attack strategy

according to the response from the target system, which requires the automatic attacker to be

capable of learning from attacks. To our best knowledge, there is no such a robot acting like

a smart attacker to play exploits against the network systems.

1.2 Our Approach

To address the above problem, we propose a design idea and implementation detail of

a software, Automatic Red Team (ART ) that is an attack automation framework based on

decision tree learning. By launching attacks selected from an attack database, sniffing traffic

between attacker and target, composing training data, and generating new attacking strategy

through a decision tree module, the ART platform achieves attack automation with less human

supervision.

However, the intention of the ART framework is not to totally replace the network security
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experts. On the contrary, we do not believe that the security assurance task would become a

fully automatic, plug-n-play job, at least in the near future. The main purpose of the ART

framework is to assist network security professionals in assessing the vulnerability of network

systems by taking over some simple and replicable penetration tasks.

The key contributions of our research works are listed as below:

Artificial Intelligence The ART incorporates a Machine Learning technology, C4.5 Deci-

sion Tree, making the ART a smarter attack platform than others without Artificial

Intelligence technologies.

Polymorphic Attacks Based on an attack database and guided by attack strategies, the

ART can launch multiple types attacks against the target in an attack scenario. The

attack database can be updated to keep up with the development of attack technologies.

Portability among Platforms The inter-dependencies among attacker, attack database and

the Decision Tree module are minimized. By playing plain-vanilla attack, the attacker

does not need to know the details of the individual exploit program, so that the switch

or upgrade the attack database would not have impact on the attacker, and vice versa.

The Decision Tree module receives the standardized training data from a Training Data

Generator, and the generated rules by the module will be incorporated into a new at-

tacker by an Attack Strategy Composer. Thus, there is no direct connection between

the attack database and the attacker, minimizing the dependency between them. Thus,

migration or upgrade of the ART framework becomes less stressful.

By building such a software, we made a meaningful attempt towards the attack automation

that would benefit the improvement of cyber space security. We believe that our approach is

a useful tool to be able to alleviate the network security professionals’ work loads during Red

Teaming .
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1.3 Thesis Outline

The rest of the thesis is organized as the following: Chapter 2 reviews the related works:

1) attack simulation and modeling; 2) the application of machine learning in network security,

especially for intrusion detection; 3) the application of statistical methods in network security.

Chapter 3 provides the design and implementation detail of the ART platform, and Chapter 4

presentes a case study on the ART framework: 1) describing the experiment environment and

procedure; 2) analyzing the experiment result; 3) verifying the generated attack strategy with

a statistical method, Principle Component Analysis. Finally, Chapter 5 concludes our work

and give a discuss of the future work.
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CHAPTER 2. Review of Related Works

In this chapter, we reviewed the related works on Attack Automation, the application of

Decision Learning Tree in network security such as Intrusion Detection, and the application of

statistic models such as Principle Component Analysis.

2.1 Attack Modeling and Simulation

Howard, J.D., T.A. (1998) developed a Common Language, a high level taxonomy, to

classify and understand computer security incident information including the attack category

and related terms.

Researchers took a lot of efforts to make the simulation environment more and more closed

to the real cyber attack / defense scenario. Lau, F., R.H. (2000) simulated a Distributed

Denial of Service (DDOS) attack using ns-2 network simulator. They also found that the

class-based queuing algorithm can guarantee the legitimate user’s bandwidth even under the

DDOS attack. However, their focus is on the impact of DDOS on the queuing algorithm and

the attack method in their simulation is simple and fixed. Chi, S.D., P.J. (2001) developed a

hierarchical and modular modeling environment to simulate the cyber attacks. Compared with

Lau, F., R.H. (2000), Chi, S.D., P.J. (2001)’s simulation environment is more complicated.

The environment consists of attacker model, analyzer model and network models including

node model, router model and topology model.

Some studies were devoted to model the behavior of the attackers. Kotenko, I., E.M. (2003)

implemented an attack simulator that provides a hacker-agent and network-agent system based

on malefactors intention modeling, ontology-based attack structuring and state machines spec-

ification of attack scenarios. However, their attack action was limited by a pre-defined parame-
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ters such as Number of attack Steps, Percentage of Intention Realization, Percentage of Firewall

Blocking, and Percentage of Attack Realization. Based on a discrete-event simulation model,

Kuhl, M.E., J.K., K.C. (2007) incorporated IDS module in their attack simulator so that the

simulator can use the IDS alerts to test and evaluation the attack and the system securities.

2.2 Application of Machine Learning and Statistical Method in Network

Security

Machine Learning is able to understand the difference between normal and anomalous

patterns by being trained with training data, and generate classifiers. These classfiers can be

used to detect network attacks. Therefore, there are numerous efforts on applying Machine

Learning on security, especially anomaly detection.

Debar H., B.M., S.D. (1992) utilized the Artificial Neural Networks to learn normal traffic

pattern and classify the new traffic into attacks or normal traffic. Lane, T., B.C. (1997) used

similarity measurement to compare the current user input with the profiled user’s sequence

of action (Unix commands) so that the anomaly can be detected. Labib, K., R.V. (2002)

used a Self-Organized-Map to cluster the real-time network traffic data so that the abnormal

traffic can be easily spotted in a GUI interface. Konrad, R., P.L. (2008) proposed a frame-

work using kernel-based learning for sequence similarity measurement. Li, X., Y.N. (2003)

presented an algorithm classifier for intrusion detection, using different features of raw ac-

tivity data in computer network systems and different sizes of observation windows. Stein,

G., C.B., W.A., H.K. (2005) added generic algorithm to prune the output of their Decision

Learning Tree algorithm, improving the efficiency.

Based on the assumption that the attack traffic is statistical different from the normal

traffic, many research works are also done on intrusion detection by applying multivariate

statistical methods such as Principle Component Analysis or Cluster Analysis. Compared

with other IDS algorithm such as signature-based methods or data mining-based methods, the

statistical methods does not have to rely on labelled training data. Consequently the statistical

methods can do better on detection of new types of attacks.
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Shyu, M.L., C.S., S.K. C.L. (2003) proposed an Intrusion Detection System by using Prin-

ciple Component Analysis, in which the difference of a normal instance from an anomaly one

is transferred into the distance in the Principle Component Space. Stefano, Z., S.M. (2004)

proposed a two-tier architecture for intrusion detection. The first tier uses unsupervised clus-

tering algorithm to reduce the network traffic down to a tractable size. The clustered data

then is to passed to the second tier, a traditional anomaly detection algorithm. In his book,

Eskin, E., A.P., P.L., S.S. (2002), provided improvements in accuracy by making the clusters

be adaptive to changing traffic patterns. Leung, K., L.C. (2005) developed a system based on

density-based and grid-based high dimensional clustering algorithm.
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CHAPTER 3. Design and Implementation of the ART Framework

3.1 Introduction

In this chapter, we describe the design and implementation of the Auto Red Team (ART ),

an attack automation framework based on Decision Learning Tree. We start from the enumer-

ation of the design goal, subsequently the basic concept of the traffic sniffing, training data

composing, and attacking strategy generating through Decision Tree Learning. Then we detail

on the Design and implementation of the sub-modules of the framework. Finally, we discuss

the efficiency and accuracy of this framework, and issues such as porting this software to other

platforms.

3.2 Design Goal

The ART framework should should meet the following criteria.

Launch multiple round of attacks The ART framework should have a attack program

library so that multiple attacks can be selected and launched against the targets. The

framework should be able to maintain and update the current attack program library to

keep up with the the quick evolving attack in real world.

Self training ability The framework should be capable of training itself by incorporating cer-

tain Artificial Intelligence approach so that it can generate corresponding Attack Strategy

for different type of targets.

Differentiate between success and failure of the attack result The ART framework should

be able to tell whether the attack is successfully complete or failed by analyzing the data
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generated from the traffic between the attack program and the target. Since the attacker

plays the vanilla attack, the attacker has no knowledge about the attack program. So

the attacker must rely on the traffic between the attack program and the target to make

decisions.

Choose next step based on the response from target The ART framework must be ca-

pable of making choice of next steps from one of the followings: stop attacking if the last

attack succeeds, or change to other type attack because the target seems to be immune

on the current types of attack, or stay in the same type of attack but change a different

attack program.

According to the goals, the ART framework should be able to sniffer traffic between attacker

and targets, compose training data based on the captured traffic data, generate / update the

attack strategies by feeding those training data into a Decision Learning Tree model, and apply

these strategies onto the attacker.

3.3 Infrastructure of the ART framework

The ART framework consists of three major parts, attack program library, attacker trainer,

and attacker. There are two modes of the ART – Training Mode and Attack Mode. In Training

Mode, the framework launches multiple attacks to the target, and generate training data from

the captured packets between the attacker and the target. These training data will be fed into

a Decision Learning Tree module to generate a set of attack rules named Attack Strategy . In

Attack Mode, the attacker incorporates the generated Attack Strategy and launches ”smart”

exploits according to the target response and the Attack Strategy until the exploit succeeds or

all exploits fail. Figure 3.1 shows the infrastructure of the ART . The detailed description of

the sub-models is listed below.

Attack Database The Attack Database stores all the attack programs that are used against

the targets. Instead of re-inventing the wheel, and also for concept-prove purpose, we

choose the exploit library of Metasploit [Metasploit (2008)] as the attack database of the
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Figure 3.1 Infrastructure of the ART framework

ART . Metasploit is a development platform for creating security tools and exploits. It

provides various exploit programs, for example, Microsoft IIS 5.0 IDQ Path Overflow for

Windows and Samba nttrans Overflow for Linux. Metasploit also provides the payloads

that perform tasks upon a successfully penetration. Typical payloads are adduser to

add an Administrator, and reverse http to open an reverse HTTP tunneling stager.

Attacker The Attacker selects an exploit from the Attack Database, and launches the exploit

to the target. The attacker should only play Plain-Vanilla exploit, which means that the

Attacker has little knowledge of the inside of the exploit, making the Attacker rely on the

response and the Attack Strategy to tell the exploit result. According to the response from

the target and the Attack Strategy , the Attacker decides whether the exploit succeeds

or not, and takes the next step: launching an exploit that belongs the same category

with last one, or launch an exploit in different category, or stop exploiting after trying

all possible means, or stop for a successful exploit.

Target The Target is a computer that is subject to be attacked by Attacker. Currently we
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use a PC with Windows XP Professional SP2 as the Target.

Packet Sniffer The Packet Sniffer audits the traffic between the Attacker and the Target,

captures the all the packets, and pass the packets to the Packet-Preprocessor.

Packet Pre-processor The Packet-Preprocessor analyzes the packets and generates the statis-

tic data of the exploit such as total packet of an exploit, average packet length, exploit

duration, TCP flags and other statistic data. During the attack, these statistic data are

updated by newly captured packets.

Training Data Generator The Training Data Generator only works under the Training

Mode. The Training Data Generator processes the Packet Pre-processor’s data collection

at the end of every exploit, and combined all the data into a single line of training data.

It also asks for the human being’s conclusion on the result of the exploit: Succeed, or

Failed and Launch Next Exploit in Same Category, or Failed and Launch Next Exploit in

Different Category. After consolidating the human being’s conclusion and the statistical

data into a line of Decision Tree training data, the Training Data Generator will notify

the Attacker to launch another exploit to generate new training data or stop according

to human being’s input.

Decision Tree Module The Decision Tree Module is a modified C4.5 Decision Learning Tree

software [J.R. Quinlan (1992)]. The Training Data Generator feeds multiple training

date items into the Decision Tree Module. The Decision Tree Module then generates a

set of attacking rules.

Attack Strategy Composer The Attack Strategy Composer extracts the attacking rules

from the output of Decision Learning Tree Module, transforms those rules into a set

of if-else statements named Attack Strategy , and injects the Attack Strategy into the

Attacker. Thus, the Attacker will become a smarter attacker to perform more effective

exploit on targets.
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There is a loop in the ART framework: the Attacker launches attacks according to the

current Attack Strategy ; the packets between the Attacker and target will be used to gener-

ate new Attack Strategy by the Decision Learning Tree Module; The newly generated Attack

Strategy will be incorporated into the Attacker to make a smarter Attacker, and so on.

3.4 implementation of the ART framework

In this section, we will discuss the implementation detail of the ART framework. We start

with the Attacker and Attack Database, we then describe the core part, Packet Processor

including Packet Sniffer, Packet Pre-processor, and Training Data Generator. Finally, we will

introduce how the Attack Strategy Composer transforms the output from Decision Learning

Tree to Perl version if-else statements.

3.4.1 Implementation of Attack Database and Attacker

We chose the exploit library of Metasploit version 3.1 [Metasploit (2008)] as the attack

database of the ART . The Metasploit , a popular development platform for development of

security tools, is used by many network security professionals to perform penetration tests, to

verify security patches, and to perform regression tests. The framework is developed in Ruby

programming language. Some of its components are also written in C or assembler.

The Metasploit provides large exploit database for various Operating Systems including

in others, Microsoft Windows series, Linux, Mac OSX and various Unix systems. Currently,

we only use its exploits for Windows as our concept-prove implementation. All the Windows

exploit categories are listed in Table 3.1.

The Metasploit also provides both GUI and CLI. We chose a CLI command as the interface

between the Metasploit and the Attacker. The command is msfcli with syntax as ./msfcli

<exploit name> <option=value> [mode]. Table 3.2 shows the available modes of this CLI

command.

The Attacker is an exploit launcher called by the Training Data Generator during Training

Mode and called by users during the Attack Mode. Because Metasploit does not provide a



www.manaraa.com

13

Table 3.1 Exploit Category of Metasploit Library for Windows

Category Attacking Targets
Antivirus Antivirus softwares (ex. Symantec Remote Management)
Backup System backup softwares (ex. Veritas Backup Service)
Browser Windows browsers (ex. Internet Explore)
RPC/DCOM Windows RPC or DCOM (ex. Message Queueing Service)
Driver Various drivers (ex. Broadcom Wireless Driver)
Firewall Windows firewalls (ex. ISS PAM.dll ICQ Parser )
FTP Various FTP servers (ex. WS-FTP Server 5.03)
HTTP Various HTTP servers (ex. Apache mod jk 1.2.20)
IIS Windows IIS (ex. IIS 5.0 Printer Host)
IMAP IMAP Servers (ex. Novell NetMail IMAP)
ISAPI IIS ISAPI (ex. IIS’s nsiislog.dll )
LDAP LDAP Services (ex. IMail LDAP Service)
SMB SMB Services (ex. Workstation Service)
MSSQL SQL Server (ex. Microsoft SQL Server Resolution)
Misc Miscellaneous Services (ex. DirectX DirectShow)

command line query interface, we hard-coded the name of the exploits into Attacker so that

it can launch these exploits by calling the msfcli with the correspondent exploit name. The

procedure of launching an exploit is listed below:

1. Select an exploit according to its Attack Strategy ;

2. Create a pipe;

3. Fork a process to execute the selected exploit by calling msfcli;

Table 3.2 The Modes of msfcli

Mode Description
Summary Show information about this module
Options Show available options for this module
Advanced Show available advanced options for this module
IDS Evasion Show available ids evasion options for this module
Payloads Show available payloads for this module
Targets Show available targets for this exploit module
Actions Show available actions for this auxiliary module
Check Run the check routine of the selected module
Execute Execute the selected module
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4. Profile the output of the exploit through the created pipe;

5. Notify the the caller (Training Data Generator or user) when the exploit ends.

3.4.2 Implementation of Packet Processor

The Packet Processor consists of three sub models – Packet Sniffer, Packet Pre-processor,

and Training Data Generator, which work together to accomplish tasks of traffic audit and

training data composition. We detail on the implementation in the following.

Packet Sniffer The Packet Sniffer captures the packets between the Attacker and the target

by using PCAP library [PCAP Library (2008)], an open source Application Programming

Interface (API) for network packet capture. Before the Attacker launches the exploit, the

IP addresses of Attacker and target are sent to the Packet Sniffer. The Packet Sniffer then

calls PCAP API to set up the packet capture device. The main API sequence that it calls

is: pcap open live to initiate the capture device, pcap compile and pcap setfilter to

compile and set capturing filter, and pcap dispatch to designate to call-back function

upon the event of capturing packet. Whenever there is a packet captured, the Packet

Sniffer forwards it to Packet Pre-processor.

Packet Pre-processor Layer by layer, the Packet Pre-processor breaks down every packet

that is forwarded from Packet Sniffer, starting from Link layer, IP layer, to TCP/UDP

layer. During the break down, the Packet Pre-processor profiles the packet length in IP

layer, the TCP flags, Source and Destination Port, and updates the statistic data starting

from the begin of exploit – packet counts, total packet size, average packet size, maximum

packet size, minimum packet size, standard deviation of packet size, current interval, total

duration, average interval, maximum interval, minimum interval, and standard deviation

of the packet interval.

Training Data Generator The Training Data Generator is blocked by function wait(the

process id of the Attacker). Upon the completion of the exploit, the Attacker pro-

cess exits, unblocking the Training Data Generator that will extract the statistic data
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from Packet Pre-processor and the exploit conclusion from user. After consolidating all

the data and conclusion into a single line item, the Training Data Generator re-launches

an Attacker to profile a new training data item by forking a new process. However, if

the Training Data Generator receives a ”start-to-train” command from user, it will feed

all the saved training data into the Decision Learning Tree by forking a new process that

will run the Decision Learning Tree Module.

3.4.3 Implementation of the Decision Learning Tree and Attack Strategy Com-

poser

The modified C4.5 Decision Learning Tree software is originally written by J.R. Quin-

lan (1992). The original release is written for BSD 4.3. To port this release onto Linux

platform, we made some changes. For example, we changed function pair calloc and cfree

to malloc and free.

Since the Decision Learning Tree module can not generate output that can be directly

incorporated into a program, we need to to change the module’s output from human readable

rules to certain if - then statements that can be incorporated into some executable script such

as Perl or source codes such as C source code. So we constructed a converter written in Perl

to make such conversion. For example, The Attack Strategy Composer converts the following

rule shown in Figure 3.2 to the statement shown in Figure 3.3. The perl code to convert the

above outputs is listed in Appendix 5.4.

 
Rule 5: 

         flag = APSF 

         total_packets <= 11501 

         max_interval_size > 2.2539 

         ->  class SUCCEED  [63.0%]!

Figure 3.2 Example Outputs from c4.5rules
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if{ flag == "ASPF" && total_packets <= 11501 && max_interval_size >= 2.2539 }{ 

    succeed();  

}!

Figure 3.3 Example Outputs from Attack Strategy Composer

The final output of Attack Strategy Composer is an executable Perl script that becomes a

newer, smarter Attacker.

3.5 Discussion

In this chapter, we described the design goals, software infrastructure of ART framework,

and the implementation details. The framework is an attack automation platform incorporat-

ing existing softwares such as Metasploit and C4.5 Decision Learning Tree module. The ART

framework has the following hightlights:

Minimum Dependency between Exploits and the Platform By playing ”Plain-Valinlla”

exploit against the various targets, the ART can easily be expanded and upgraded be-

cause the dependency between the exploit and the platform is reduced to the minimum.

Therefore, the ART can switch to another Attack Database from the Metasploit , the

currently used Attack Database, if needed.

Artificial Intelligence The ART incorporates one of the popular Machine Learning meth-

ods, C4.5 Decision Learning Tree module, making the ART a smarter attack platform

than others without Artificial Intelligence technologies. According to the experiment in

next chapter, the accuracy of the decision tree based attacker can be as high as 90.5%.
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CHAPTER 4. Experiment: Using Exploits on Windows to Train an

Attacker

To verify the ART framework, we conducted an experiment that generated 42 training

data by launching exploits against a Windows XP machine. We then fed these data into a

C4.5 Decision Tree Module, generating a set of rules. These rules, named Attack Strategy was

fed into a Perl script named Attack Strategy Composer that transforms those rules into a set

of if-else statements. The Attack Strategy Composer also incorporated those if-else statement

into a Perl script, making a new attacker. To exam these rules, we also ran a statistic method,

Principle Component Analysis on those training data by using R [R Project (2008)]. The

result shows that the generated rules partially match the Principle Components generated by

the Principle Component Analysis.

The rest of this chapter is organized as the following: First of all, we describe the experiment

environment including software and hardware settings in Section 4.1. Secondly we present the

experiment result – the output tree from the Decision Learning Tree module and the generated

rules in Section 4.2. We then apply Principle Component Analysis onto the training data and

compare the result with the output of Decision Learning Tree in Section 4.3. Finally we give

further discussion in Section 4.4.

4.1 Experimental Environment

The experiment settings and the experiment procedure are listed below:

Software and Hardware Settings All the modules of the ART framework are implemented

on one Intel Celeron 2.4 GHZ Personal Computer with Linux 2.6 Kernel, GCC 4.0 and

Perl 5.8. In this experiment, we chose another Intel Celeron 2.4 GHZ with Windows XP
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Professional as the target machine for the concept-prove purpose. The Attacker and the

target were connected by a 100 MHZ ethernet hub.

Experiment Procedure We chose 42 exploits from the Attack Database and had the At-

tacker launch them one at a time against the target. Upon every completion of the

exploit, we decided whether the exploit succeeded or failed by checking the output of the

exploit and the status of the target machine. We then instructed the Packet Processor

to conclude the exploit result. After all the 42 exploits finished, we fed the generated

training data into a C4.5 Decision Learning Tree module. The module generated a set of

rules to guide the Attacker. These rules, named Attack Strategy , were incorporated by

the Attack Strategy Composer into a new Attacker. Thus, a cycle of launching attack,

generating training data, feeding Decision Learning Tree to obtain new Attack Strategy ,

and finally generating a new Attacker is finished.

Training Data There are 13 metrics in a single training data. These metrics and their

description are shown Table 4.1

Table 4.1 Metrics of Training Data

Metrics Description
flag TCP flags appear during the exploit
packet count Number of captured packets
total packets Accumulated packet size
ave packet size Average packet size
max packet size Maximum captured packet size
min packet size Minimum captured packet size
std dev packet size Standard deviation of packet size
interval count Number of interval between packets
total duration Total time of the exploit
ave interval Average interval
max interval Maximum interval
min interval Minimum interval
std dev interval Standard deviation of interval
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4.2 Experiment Results

Figure 4.1 presents the Decision Tree Output, Figure 4.2 shows the rules generated by De-

cision Learning Tree Module, and Figure 4.3 demonstrates how the Attack Strategy Composer

transferred the rules, shown in Figure 4.2, into a set of if-then statements.

As seen in Figure 4.1, the C4.5 Decision Learning Tree module produced a five-level decision

tree. The root of the generated tree is total packet size followed by TCP flags, total duration

and etc. The error rate of the decision tree is 9.5%. The rules generated of the C4.5 Decision

Learning Tree module also generated four rules regarding to how to conclude the exploit result.

The error rate of the examination on these rules are 23.8%. Besides, we also have the following

observations:

• As seen in Figure 4.4, the exploits that have total packet size greater than 11,000 are all

failed exploits. So it is not surprised to see that the C4.5 Decision Learning Tree module

treats the exploit with larger total packet size as first criteria of fail or succeed.

• The ”R” in TCP flags stands for a reset signal from target machine, which means that

the exploited port is closed. An exploit attacking an closed port will not succeed in most

cases. So it is not surprised that all decisions on the flags with ”R” are classified as failed

attempt.

4.3 Statisitical Analysis

4.3.1 Introduction of Principle Component Analysis

The training data can be treated as a matrix with 42 row and 13 columns. Each row

represents an exploit and each column represents a metric of the exploit, such as total packets

or ave interval shown in Table 4.1. The 42× 13 matrix makes it difficult to understand the

relationship between the training data and the generated tree. To tackle such a problem, we

apply a multivariate statistical method, Principle Component Analysis on the training data to

verify the generated rules.
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C4.5 [release 8] decision tree generator        Tue Aug 19 18:24:25 2008 

---------------------------------------- 

Read 42 cases (13 attributes) from target_response.data 

Decision Tree: 

total_packets > 11501 : FAILED_TRY_SAME_TYPE (5.0) 

total_packets <= 11501 : 

|   flag = APRS: FAILED_TRY_OTHER_TYPE (0.0) 

|   flag = AP: FAILED_TRY_OTHER_TYPE (8.0/2.0) 

|   flag = APF: SUCCEED (2.0) 

|   flag = AS: FAILED_TRY_OTHER_TYPE (3.0/1.0) 

|   flag = APRSF: FAILED_TRY_OTHER_TYPE (1.0) 

|   flag = A: SUCCEED (1.0) 

|   flag = ARS: FAILED_TRY_OTHER_TYPE (5.0) 

|   flag = APSF: 

|   |   max_interval_size > 2.2539 : SUCCEED (3.0) 

|   |   max_interval_size <= 2.2539 : 

|   |   |   packet_count > 24 : FAILED_TRY_SAME_TYPE (2.0) 

|   |   |   packet_count <= 24 : 

|   |   |   |   total_duration <= 0.045358 : FAILED_TRY_SAME_TYPE (2.0) 

|   |   |   |   total_duration > 0.045358 : FAILED_TRY_OTHER_TYPE (6.0) 

|   flag = APS: 

|   |   packet_count <= 6 : FAILED_TRY_OTHER_TYPE (2.0) 

|   |   packet_count > 6 : SUCCEED (2.0/1.0) 

Tree saved 

Evaluation on training data (42 items): 

  Before Pruning           After Pruning 

 ----------------   --------------------------- 

 Size      Errors   Size      Errors   Estimate 

   20    4( 9.5%)     20    4( 9.5%)    (41.9%)   << 

 

Figure 4.1 Generated Tree from C4.5 Decision Learning Tree Module
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Read 42 cases (13 attributes) from target_response 

Rule 4: 

        flag = APSF 

        total_packets <= 11501 

        max_interval_size > 2.2539 

        ->  class SUCCEED  [63.0%] 

Rule 6: 

        flag = APF 

        ->  class SUCCEED  [50.0%] 

Rule 11: 

        total_packets > 11501 

        ->  class FAILED_TRY_SAME_TYPE  [75.8%] 

Rule 8: 

        packet_count <= 6 

        ->  class FAILED_TRY_OTHER_TYPE  [67.3%] 

Default class: FAILED_TRY_OTHER_TYPE 

Evaluation on training data (42 items): 

Rule  Size  Error  Used  Wrong       Advantage 

----  ----  -----  ----  -----       --------- 

   4     3  37.0%     3  0 (0.0%)     3 (3|0)    SUCCEED 

   6     1  50.0%     2  0 (0.0%)     2 (2|0)    SUCCEED 

  11     1  24.2%     5  0 (0.0%)     5 (5|0)    FAILED_TRY_SAME_TYPE 

   8     1  32.7%    17  3 (17.6%)    0 (0|0)    FAILED_TRY_OTHER_TYPE 

Tested 42, errors 10 (23.8%)   << 

          (a)  (b)  (c) <-classified as 

         ---- ---- ---- 

            5    3      (a): class SUCCEED 

                22      (b): class FAILED_TRY_OTHER_TYPE 

                 7    5 (c): class FAILED_TRY_SAME_TYPE 

!

Figure 4.2 Generated Rules from C4.5 Decision Learning Tree Module
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The output of the Attack Strategy Composer is ..... 

if((flag=="APSF")&&(total_packets <= 11501)&&(max_interval_size > 2.2539)){ 

        succeed(); 

} 

if((flag=="APF")){ 

        succeed(); 

} 

if((total_packets > 11501)){ 

        failed_try_same_type(); 

} 

if((packet_count <= 6)){ 

        failed_try_other_type(); 

} 

!

Figure 4.3 Rules Transferred by Attack Strategy Composer

Principle Component Analysis is a common approach of multivariate statistical data anal-

ysis. Through it, the covariance of data are presented in terms of a few fundamental but

un-observable, random quantities. These quantities are called Principle Components. Prin-

ciple Component Analysis is suitable to extract and simplify the relationship between the

generated rules and the training data. Generally speaking, Principle Component Analysis is

a repetitive process that uses linear regression to find a new set of dimension, the number

of which usually is less than the dimension number of the original data space. The new set

of dimension is better aligned with the data. By Principle Component Analysis, the 42 × 13

training data matrix can be transferred into a less dimension data space.

The original n × p data matrix can be seen as a set of observable random vectors X ′
p×1

with mean µ and covariance matrix Σ. Each vector, X can be written in linear combinations

shown in Equation 4.1.

X1 = u1 + l11PC1 + l12PC2 + ... + l1mPCm + ε1
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X2 = u2 + l21PC1 + l22PC2 + ... + l2mPCm + ε2

...

Xp = up + lp1PC1 + lp2PC2 + ... + lpmPCm + εp (4.1)

In Equation 4.1, symbol µi is the mean of variable i, while εi represents ith error, PCj for

j th Principle Component, and lij is the loading of the ith variable on the j th component. This

equation is the model of Principle Component Analysis. The power of Principle Component

Analysis is that – the significant portion of variation in the original data can be explained by

the first few Principle Components with the rest of components discarded. For our training

data, we can expect to use less number of Principle Components to represent the 42×13 data.

4.3.2 Applying Principle Component Analysis on the Training Dta

We wrote a script of R language [R Project (2008)] to apply the Principle Component

Analysis on the training data. Before applying Principle Component Analysis, we deleted

the 12th metric, min interval because the the data of this metric in the matrix are all zero.

Figure 4.6 shows the first four Principle Components. The cumulative proportion of the vari-

ance represented by these four components is 0.835%, making it is enough to use these four

components to explain the significant variation in the original data. However, the complete

variance of Principle Components 1 to 10 can be found in Figure 4.5.

To understand the relationship between the metrics of training data and these four com-

ponents, we need to investigate the loadings of Component 1 to 4, which are shown in Ta-

ble 4.2. The projection of these metrics on Component 1 and 2, which is shown in Figure 4.7,

demonstrates the variation distribution, too. Based on these figures, we have the following

observations:

• According to Table 4.2, only flag and ave interval have positive value in the loading

of Component 1, suggesting their variation direction is consistence with that of Compo-

nent 1, while other metrics take opposite variation direction. Seen from Figure 4.7, the

direction difference of flag partially explains the fact that the C4.5 Decision Learning
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Figure 4.5 Variance of Principle Components

Tree also incorporated the flag in its every generated rule. However, why there is no

rule to incorporate the ave interval that also has positive value needs more study.

• According to Figure 4.7, V11: max interval and V13: std dev interval take opposite

variation direction against the V1: flag. On the other hand, the C4.5 Decision Learning

Tree also put the max interval into the third level of the generated tree (See Figure 4.1)

and incorporated it into its Rule 4 (See Figure 4.2). Similarly, why there is no rule to

incorporate the V13: std dev interval needs further investigation.

 
Comp.1    Comp.2    Comp.3     Comp.4 

Standard deviation     2.0468856 1.7870018 1.3083739 0.96638509 

Proportion of Variance 0.3491451 0.2661146 0.1426535 0.07782501 

Cumulative Proportion  0.3491451 0.6152597 0.7579132 0.83573823 

!

Figure 4.6 Result of Principle Component Analysis on Training Data
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Figure 4.7 Projection of Metrics on Principle Component 1 and 2

Our observation suggests that: somehow, the generated tree and rules reflects the major

variation of the Original training data. However, the Decision Learning Tree algorithm is a non-

linear system. So the linear Principle Component Analysis should not be able to completely

explain the output from the C4.5 Decision Tree.

4.4 Discussion

In this chapter, we presented the experiment result including the generated decision tree

and the rules that will be incorporated into the Attacker as the new Attack Strategy . To further

investigate the relationship between the generated decision tree and the metrics, we applied

Principle Component Analysis on the training data. The loadings of the Principle Components
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Table 4.2 Loadings of the First Four Principle Components

Metrics Comp. 1 Comp. 2 Comp. 3 Comp. 4
V1: flag 0.132 -0.419 -0.264 0.241
V2: packet count -0.337 -0.271 0.392 0.000
V3: total packets -0.384 -0.211 0.262 0.000
V4: ave packet size -0.361 0.162 -0.355 -0.111
V5: max packet size -0.418 0.000 -0.313 -0.117
V6: min packet size 0.000 0.368 0.384 -0.371
V7: std dev packet size -0.401 0.000 -0.394 0.000
V8: interval count -0.337 -0.271 0.392 0.000
V9: total duration -0.186 0.261 0.000 -0.527
V10 : ave interval 0.212 0.000 -0.156 0.000
V11: max interval -0.189 0.418 0.000 0.531
V13: std dev interval -0.149 0.463 0.000 0.448

and the projection of the metrics on Principle Component 1 and 2 suggest that the Decision

Learning Tree algorithm somehow is consistent with the linear space of the training data.

However, this experiment only use a Windows XP machine as target machine, not reflecting

the diversity of the targets in real world. Our next step is to use the Attacker against other

Operating Systems to get as diverse as possible training data.
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CHAPTER 5. Summary and Discussion

In this chapter, we summarize the thesis, review the thesis contributions, and discuss the

future work.

5.1 Summary

This thesis describes a framework named ART , standing for Auto Red Team, which is a

platform utilizing Decision Tree Learning technology to realize attack automation. The key

idea is to audit the traffic between the attacker and the target machine, then apply Decision

Tree Learning methods on the audit data to generate a set of rules, then incorporate these

rules into the attacker, making it be capable of launching attack sequence according to the

response from the target machine.

We were motivated by stating the importance of attack automation on Red Teaming that

can alleviate security experts and system administrators’ burden by taking over certain re-

dundant tasks in penetration test. We provide the background of Red Teaming and attack

automation and point out that current Red Teaming softwares can only perform simple attack

automation and lack of adaptability, and extensibility. We then proposed our idea to incorpo-

rating Decision Tree Learning techniques in order to build a smarter framework. The goal of

this thesis is therefore to develop such a software that is adaptive and extensive in penetration

test automation.

We then reviewed the current research works in Attack Automation, the application of

Decision Learning Tree in network security such as Intrusion Detection, and the application

of statistic models such as Principle Component Analysis of Cluster Analysis. After that,

we present the design and implementation details of our platform, ART framework. We also
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presented our case study of the ART by conducting experiments on it, showing that the

ART is able to perform traffic auditing, to extract new attack rules, named Attack Strategy

that are generated from a Decision Tree Learning module, and to make new attacker that is

guided by those Attack Strategy and is capable of launching attack sequence according to the

response from the target machine. Beside basic data analysis on the experiment data, we also

apply a statistical method, Principle Component Analysis on the experiment data to verify the

generated rules. Although the Principle Component Analysis can not completely explain the

rules generated by the Decision Tree module, some convincing explanations on the relationship

between those rules and Principal Components were given.

5.2 Thesis Contributions

The intention of the ART framework is not to totally replace the network security experts.

On the contrary, we do not believe that the security assurance task would become a fully au-

tomatic, plug-n-play job, at least in the near future. The main purpose of the ART framework

is to assist network security professionals in assessing the vulnerability of network systems by

taking over some simple and replicable penetration tasks.

The key contributions of our research works are listed as below:

Artificial Intelligence The ART incorporates a Machine Learning technology, C4.5 Deci-

sion Tree, making the ART a smarter attack platform than others without Artificial

Intelligence technologies.

Polymorphic Attacks Based on an attack database and guided by attack strategies, the

ART can launch multiple types attacks against the target in an attack scenario. The

attack database can be updated to keep up with the development of attack technologies.

Portability among Platforms The inter-dependencies among attacker, attack database and

the Decision Tree module are minimized. By playing plain-vanilla attack, the attacker

does not need to know the details of the individual exploit program, so that the switch or

upgrade the attack database would not have impact on the attacker, and vice versa. The
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Decision Tree module receives the standardized training data from a Training Data Gen-

erator, and the generated rules by the module will be incorporated into a new attacker

by a Attack Strategy Composer. Thus, there is no direct connection between the attack

database and the attacker, minimizing the dependency between them. Consequently,

migration or upgrade of the ART framework becomes less stressful.

5.3 Future Work

There are two interesting and important future directions:

Generating Rules based on Hybrid Data : Currently the Attack Strategy is generated

from the training data on single type of Operating System. We believe that it would make

the Attack Strategy more robust if we could conduct experiments on various Operating

System and collect training data from those experiments.

Incorporating Complier Techniques : Currently the Attack Strategys are transformed

from human readable form to Perl’s if-else statement by the Attack Strategy Composer.

If we could make those Attack Strategys be incorporated into C source code by modifying

a compiler instead of using Perl’s script, the new attacker would be still built from C

source code and can reflect the new Attack Strategy in real-time, just like the Just in

Time techniques in Java Virtual Machine design. Thus we can expect an improvement

on efficiency of the new attacker.

5.4 Closing Remarks

This thesis documented our research in developing and applying Decision Tree Learning

techniques to the challenging problem of attack automation applications. A framework named

ART that is for such an application was designed, implemented, and evaluated for this thesis

research. While ART has shown great promises, there are still open issues for future research.
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APPENDIX:

The Source Code of Attack Strategy Composer

Program 1 Source Code of Attack Strategy Composer (part-1)

#!/usr/bin/perl
my $file_name = $ARGV[0];
print "The data file is $file_name.\n";
open(DATA_FILE, "<" . $file_name) or die "can’t open $store_path $!";
# state: 0: initial state, 1: found if state ments, 2: found action
my $state = 0;
# constant of header and signs
my $IFHEADER = "if(";
my $TAIL = "){";
my $END = "}\n\n";
my @outputlines;
my $inputline = "";
my @filelines = <DATA_FILE>;
foreach my $line (@filelines){

$line =~ s/[\n,\r]//g;
$line =~ s/^\s+//g;
#print "Current line is $line\n";
if ($state == 2){ #save the inputline

push (@outputlines, $inputline);
$state = 0;
$inputline = "";

}
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Program 2 Source Code of Attack Strategy Composer (part-1)

if ($line =~ /\w+ [<,=,>]+ [\w+,\d+]/){#if statement
if ($line =~ / = \w+/){

$line =~ s/ = /=="/;
$line .= "\"";

}
else{

$line =~ s/ = /==/;
}

if ($state == 0){ #first if statement
$state = 1;
$inputline .= "$IFHEADER($line)";

}
elsif ($state == 1){

$inputline .= "||($line)";
}

}
elsif ($line =~ /->/) {#decision

$line =~ s/->\s+class\s+/\t/g;
$line =~ s/\[\d+\.\d+%\]$//g;
$line =~ s/\s+;$/;/g;
$line = lc($line) . "()";
if ($state == 0){ #first if statement

print "data error.\n";
}
elsif ($state == 1){

$inputline .= "$TAIL \n\t$line;\n$END";
$state = 2;

}

#print $inputline;

}
}

print "The output of the Attack Strategy Composer is ..... \n";
foreach my $line (@outputlines){

print $line;
}
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